UH
_iii
‘2 Universitdit Hamburg
FORSC

HUNG | DER LEHRE | DER BILDUNG

1 ROS Qunity
ROS AND UNITY
A COMPREHENSIVE INTRODUCTION

Danial Bagheri
Supervisor: Sebastian Starke

Content:

> ROS

Introduction

= What uses ROS at the moment?

n Peripheral units

= What make ROS outstanding?

Core modules

= Standard Message Definitions

= Robot Geometry Library

= ROS visualizer (RVIZ)

= Robot Description Language (URDF)
Side modules

= GAZEBO
= Movelt

= OpenCV
= Arduino

How ROS works

= Publisher- subscriber Topic-
Message

= Service-client

» Unity Introduction
» Unity with ROS

» Stand alone Unity

ROS : Introductiony e ROS 4

» ROS stands for Robot Operating System . Collection of tools, libraries, and conventions

to simplify the task of creating robot across a wide variety of robotic platforms. [1]
» Stablishing and controlling communication between peripheral modules of a robot : ®

sensors, cameras , physical fingers and etc. [1] WI].].OW
» ROS started at Stanford Artificial Intelligence Lab then further developed at Willow b e CAS

Garage. [2]
» ROS is fully functional on Ubuntu and partially functional on other OS like Windows or (3]
Mac[5]
» ROS is open source Therefore[5]:
= |tisfree @
= There is a large community of contributors. You can be one of them.
ubuntu

cos I a OS
. (N N] I
1-P th Id’s Robots- ROS.ORG-
E owering the world’s Robots] o0 e .O q [5]

2 - Powering the world’s Robots- ROS.ORG - History]
[3 - Willow Garage]
[4 - Ubuntu - The Ubuntu stacked logo]

[5 - Wiki.ros.org - Introduction-]

What uses ROS at the moment?

> Almost all robots you have seen in Academic and to some extend in industry.
» Humanoid Robots : Nao®, GeRo®, Robonaut 2, ROBOTIS Thormang3, REEM®, ...
» Manipulators: Barrett WAM ®, Baxter®, ...

')
)ue
s 2o

» Multi-fingered graspers : BarrettHand® , shadowHand, ..
» Intelligent vehicles : quadrotor helicopters, Autonomous cars, ...

[1 - Powering the world’s Robots- ROS.ORG - Robots -]

[2 - Pullman Academic - Baxter robot-]
[3 - Robotnic - BARRETT WAM -]

[4 - ROS Spotlight: Pal Robotics' REEM-C]
[5 - German robot - Opensource humanoid robot]

[6 - Generation Robotics -NAO -
]

[7 -Shadow Robot Company - Shadowhand -]

[8 - Barrett Technologies -]

[7]

Peripheral unitsy

1D range finders : TeraRanger, Sharp IR range finder
2D range finders : SICK LMS2xx lasers, Leuze rotoScan lase
3D Sensors : DUO3D™ stereo camera, Kinect, PMD Camcube 3.0, ...

Cameras : USB Cameras , Ethernet camera,
Force/Torque/Touch Sensors: ATl f/t sensors, Nanol7 6-axis, ...

Motion Capture: OptiTrack, VICON, LEAP Motion, ...
Pose Estimation (GPS/IMU) : BOSCH® IMU, Razor's® IMU, ...
RFID : UHF RFID Reader

YV V.V VV V V V

[1 - Powering the world’s Robots- ROS.ORG - -]

[2 - TeraRanger One -

[3 - Drexel University- SICK LMS200 tutorial -

[4 - Digital-circuitry : SICK LMS-200 / LMS-291 LIDAR LASER SCANNER RS-232 INTERFACING WITH UBUNTU &
R.0.S. -]

[5 - Microsoft -Kinect for Xbox 360 -]
[6 - Bosch - Mobility sensors SMI130 SMG130 SMA 130-

[7 - 9 Degrees of Freedom - Razor IMU -] = =

[8 - ATI Industrial Automation - Multi-Axis Force / Torque Sensors-] [8]

What make ROS outstanding?

» ROS is completely modular :
» Packages : A collection of Nodes, Messages , services.
= Nodes: a process that uses ROS framework
= Messages: Standard definition for passing information between nodes.
» Stack: Set of multiple package

» ROS is multi-language:
» C++ : full functionality with ROSCPP library
» Python : full functionality with ROSPY library
» JAVA, LISP, Octave, LUA : experimental development.

» Large set of tools out of box :Standard Robot Messages, Robot Description

Language, pose estimation, localization in a map, building a map, and even mobile
navigation.

» Integration with other libraries for: Simulation, Image processing and etc.

Powerful ROS libraries

» Standard Message Definitions
For Each peripheral module or concept

code compatibility with all other part of the
robotic eco system.

categorized by types in different packages.

Package : geometry_msgs

= Message Types available in this package:

= Point
= Pose
= Transform

» Example of a message structure:

= Package : sensor_msgs
= Message Type : Imu

std_msgs/Header header
geometry_msgs/Quaternion orientation
float64[9] orientation_ covariance
geometry_msgs/Vector3 angular_velocity
float64[9] angular_veloci ty_covariance
geometry_msgs/Vector3 linear_acceleration
float64[9] linear_acceleration_covariance

Powerful ROS libraries

> Robot Geometry Library
This is essential to keep track of position of each part of robot ,
regarding to the other parts. where is the hand, in respect to
the head ? Where is robotl regarding to the hand of robot2 ?

= Transform library (TF) is a core library of ROS and provides
a coordinate tracking system.

= TFis not a centralized library

= works base on publisher/subscriber messaging system of
ROS.

Every node has :

= Publisher (user needs to write)
= Listener(user needs to write)

[1 - ROS.ORG - Robot Geometry Library -]

TF listeners listen to the frames and
provides a Tree which describes how
coordinate systems are related to each
other.

[2 - TF ROS tutorial -]

/map [2]
v
Y
/robotl/odom /robot2/odom
/robotl/base /robot2/base
’ , Y
/robot1/laser /robotl/camera /robot2/laser /robot2/camera

Powerful ROS libraries

» ROS visualizer (RVIZ)
= RVIZ is the default 3D visualization tool for.
= RVIZ is not a "simulator”.
= RVIZ can show data that it has a plugin for
displaying (DisplayTypes) and has been
published by nodes:

Axes : Displays a set of Axes

Camera: Creates a new rendering window
from the perspective of a camera

Map : Displays a map on the ground plane
Pose : Draws a pose as an arrow or axes.

Complete set:

= Each DisplayType uses specific message.
Axes => sensor_msgs/JointStates

[Powering the world’s Robots- ROS.ORG - RVIZ Camera type
]

Powerful ROS libraries

> Robot Description Language (URDF) » Example of an URDF file:
Describe a robot in a machine readable format.
URDF is an XML file describing following physical properties: <?xml version="1.0"?>

—n

<robot name="multipleshapes">
<link name="base link">
<visual>
<geometry>
<cylinder length="0.6" radius="0.2"/>
Used by different tools for simulation, visualization and motion planning: </geometry>
= Ryviz </visual>

= Gazebo </link>
= Moveit <link name

<visual>
" Stage <geometry>
<box size="0.6 .1 .2"/>
</geometry>
</visual>
</link>
<joint name="base to right leg" type="fixed">
<parent link="base link"/>
<child link="right leg"/>
</joint>
</robot>

= Main parts: cylinder, box, length, radius, ...
= Joints : continuous joints, prismatic joint, planar joint, Joint Dynamics
(friction, damping) , Inertia

]

right leg">

[ROS.ORG -

10

Powerful ROS 3" party tools

8 > GAZEBO = URDF in Gazebo : URDF describes kinematic
GAZEBO and dynamic properties of a robot.
= Simulation environment and supports many
robots and sensors. = Not enough information for Gazebo for
= Developing and test a node without a physical accurate simulation : pose, friction, ...
robot.
= Deployment of after test with minimal change. ® Simulation Description Format(SDF)
= Start with ’gazebo’ command invented for simulation in Gazebo.
= ’'gzserver : = Stable, robust, and extensible format for
= Run the physics describing all aspects of robots, static and
= Sensor data generation dynamic objects, lighting, friction and even
= Can be used without any GUI physics.
= ’gzclient’:
= Provide a GUI for visualization of = SDF uses XML files like URDF.

simulation

11

Powerful ROS 3" party tools

@ > GAZEBO » Part of an SDF as example
el <camera name="head">
- Converting URDF to SDF Zihrﬁgzgr;tal_fow1.3962634</hor|zontaI_fov>
= Add tags and modify the URDF for example: fwidth>800</width>
= An <inertia> element within each <link> element zr;lrigii%%;/ggg;zmap
must be properly specified and configured. < liTAEEs
= Add a <gazebo> element for every <link> <cli >g
= Add a <gazebo> element for every <joint> p<near>0 02</near>
= Add a <gazebo> element for the <robot> element <far>306</far>
= The complete instruction in Gazebo website. </cI.|p>
<noise>

<type>gaussian</type>
<mean>0.0</mean>
<stddev>0.007</stddev>
</noise>

</camera>
12

Powerful ROS 3" party tools

> Moveit

reltTy INFO] [1459413732.448045917]: LBKPIECE1: Starting planning with 1 states already in datastructure
{16 UK Tepository T v MR [INFO] [1459413732.470632505]: LBKPIECE1: Created 29 (12 start + 17 goal) states in 21 cells (11 star
(11 on boundary) + 10 goal (16 on boundary))
INFO] [1459413732.479564081]: LBKPIECE1: Created 32 (13 start + 19 goal) states in 23 cells (12 star
B va7arc (12 on boundary) + 11 goal (11 on boundary))

ch_f

u 1 gl M[INFO] [1459413732.529358114]: LBKPIECE1: Created 105 (63 start + 42 goal) states in 94 cells (62 sta
€ MOoSt widely used open-source K G ottty '+ 32 gt oo hamiach)
S URNINIINNRINIIII ¢ > -+ (76 on boundary) + 110 goal (110 on boundary))
plove t noaded v lnal 2] [1NF0] [1459413732.601590245]: ParallelPlan::solve(): Solution found by one or more threads in .1545

[INFO] [1459413732.569225437]: LBKPIECE1: Created 204 (78 start + 126 goal) states in 186 cells (76 s
. . .
software for manipulation, motion i
y 8000 apt-get e INFO] [1459413732.603004327]: LBKPIECE1: Attempting to use default projection

sa
iy & SURPRPOIRR! [[NFO] [1459413732. 6 LBKPIECE1: Attempting to use default projection.
. . $ g) bhce - INFO] [1459413732. LBKPIECE1: Attempting to use default projection.
B[INFO] [1459413732. LBKPIECE1: Starting planning with 1 states already in datastructure
p a n n I n a n a n a yZI n O ro O INFO] [1459413732. LBKPIECE1: Starting planning with 1 states already in datastructure
(4) Start a new terminal and build your workspace using the foll IR TSSOt : LBKPIECE1: Starting planning with 1 states already in datastructure

INFO] [1459413732. LBKPIECE1: Attempting to use default projection.
INFO] [1459413732. LBKPIECE1: Starting planning with 1 states already in datastructure

I nte ra Ctlo n Wlth e nVI ron l I Ie nt od ors s INFO] [1459413732.643929960]: LBKPIECE1: Created 147 (83 start + 64 goal) states in 134 cells (81 st
L] EEst art (81 on boundary) + 53 goal (53 on boundary))

[INFO] [1459413732.661009705): LBKPIECE1: Created 105 (56 start + 49 goal) states in 92 cells (53 sta
rt (53 on boundary) + 39 goal (39 on boundary))

LBKPIECE1: Created 129 (14 start + 115 goal) states in 114 cells (14 s
tart (14 on boundary) + 100 goal (106 on boundary))

(5) It will start to build the workspace. Now it's time to plug-in y 5 : LBKPIECE1: Created 151 (74 start + 77 goal) states in 146 cells (73 st
(67 on boundary))
(6) You need to manually configure your wired internet conne .868222896]: ParallelPlan::solve(): Solution found by one or more threads in ©.4655|

INFO] [1459413733.068635613]: LBKPIECE1: Attempting to use default projection.
INFO) [1459413733.068694233]: LBKPIECE1: Starting planning with 1 states already in datastructure
O O d « This awind ed "Editing name EEIEAl [INFO] [1459413733.668797266]: LBKPIECE1: Starting planning with 1 states already in datastructure
O ISIOn C eC I ng the following information INFO] [1459413733.092520501]: LBKPIECE1: Created 86 (53 start + 33 goal) states in 73 cells (51 star
g (51 on boundary) + 22 goal (22 on boundary))
Address: 172.16.0.42 (new computer 5 INFO] [1459413733.138102656]: LBKPIECE1: Created 201 (47 start + 154 goal) states in 188 cells (46 s
Netmask: 255.255.255.0 tart (46 on boundary) + 142 goal (142 on boundary))

i 1 1 e " y his [INFO] [1459413733.404290773]: ParallelPlan olve(): Solution found by one or more threads in ©.3357
ntegrate InematiCs e g ateen, ot s s RRRIER

.
n Ca pa bl I Itl eS- B R B AT R i T HMCToNe [INFO] [1459413733.068567003]: LBKPIECE1: Attempting to use default projection.

« This should open t ork Connections

[INFO] [1459413733.404731674]: SimpleSetup: Path simplification took 6.000302 seconds and changed fro

IVI = g ning a tesmin enter the fol ommand [INFO] [1459413754.881540360]: Received new trajectory execution service request.
Otlo n |a n n I n [INFO] [1459413758.557782558]: Execution completed: SUCCEEDED
AC[mongo_wrapper_ros_mechlab_HP_EliteBook_846_G2_20618_9112472221712338939-7] killing on exit
ping 172.16.9.1 [rviz_mechlab_HP_EliteBook_846_G2_20618_6091753108689696457-6] killing on exit
. [move_group-5] killing on exit

[robot_state_publisher-4] killing on exit
Integrated perceptions about =

[industrial_robot_simulator-2] killing on exit

Test program [rosout-1] killing on exit

[master] killing on exit

To check if everything is working correctly, you can run a (oSt Rk e L
... shutting down processing monitor complete
one
E . d . . dustrial_cor....zip Universal.rob....zip industrial_trai....zip mechlab@nechlab-HP-EliteBook-840-G2
Interactive

Movelt in Rviz moving the ABB robot around - -
Pablo Negrete

13

Powerful ROS 3" party tools
0O

0 > OpenCV = Conversion by cv_bridge : ready functions
OpenCV

= The most powerful image processing library

= |mplemented in Python and C++.

= Many functionalities out of box : Face
detectio, Object tracking ,motion analysis,
Feature detection and ...

cv_ptr = cv_bridge::toCvCopy(msg,
sensor_msgs::image_encodings::BGR8);

cv::.circle(cv_ptr->image, cv::Point(50, 50),
10, CV_RGB(255,0,0));

= ROS have drivers for many sort of cameras: OpenCV | OpenCV cv:Mat
= openni_kinect for Microsoft kinect A
= gscam for most webcams
= swissranger_camera i
C CvBridge
= ROS uses sensor_msgs/Image message ROS ¢
and OpenCV need matrices for images. ROS Image Message

= Conversion by cv_bridge stack.

[ROS.ORG- =]

14

ROS and external hardware : Arduino
w > Arduino =

ARDUTNO Implementation

= A microcontroller with powerful interface = ROS side : rosserial stack for serialization of message
library for different hardware. over USB [3]

= Different I/O ports : Analog and digital = Arduino side: rosserial_arduino to create messages,

= (C-like language and syntax , Easy to publish, subscribe. [3]

program. Many open source projects. #include <ros.h> <std_msgs/String.h>

ros::NodeHandle n; std_msgs::String msg;
ros::Publisher pub("/my_topic", &msg); int count = O;
char data[100];
void setup(){

n.initNode();

n.advertise(pub);

}
. USB ros_serial_python void loop(){
UART || tty H{senal_node.py sprintf(data, "Hello world %d", ++count);

msg.data = data;
pub.publish(&msg);

1] [3] n.spinOnce();

delay(1000);

Arduino ROS

[2 - German robot - Opensource humanoid robot]

[3 - Wiki.ros.org - rosserial_arduinoTutorials -] }

http://wiki.ros.org/rosserial_arduino 15

How ROS works ?

>

Nodes - Messages - Topics

Node : a process that uses ROS framework.

ROSCORE connects all nodes together and
provide connectivity.

Ol]

Node ROSCORE Node

Message: Standard definitions for
transferring data between nodes.

Topic: Mechanism of transferring data
between nodes.

Publisher: A node which produce message
and publish them.

Subscriber: A node which receives the
messages.

» Workflow:

1. Node A publish a message to a topic

2. All nodes which are subscribed to that
topic, will receive the message.

Node B:
D '":{> '"//:{>D subscriber

Node A :
Publisher

» Nodes commands:

" rosrun package
executable

= Roslaunch
package_name
file.launch

Topic : N

Odometry

Node C:
subscriber

» Topiccommands:

#show list of messages inside
topic

= Rostopic echo /topicName
= Rostopic list

= Rostopic info topicName

16

How ROS works ?

» Service-Client

ROS Node

The publish/subscribe model is very flexible but not enough for a Service
distributed system.

= Service-Client is way to retrieve the data immediately instead Request Response

of waiting for a message to be published.

= A node provides a service , the client node call the service by Client
sending request message.

ROS Node

= Service-client => one-to-one
= Topic- message => one-to-one, one-to-many, many-to-many [Mathwork -

17

Implementation example : Message-Topic

» Subscribing to a topic
Initialize rospy
NODE_NAME = "localization'
import roslib; roslib.load_manifest(NODE_NAME)

import rospy This is a callback
function.

Import LaserScan message type This is called whenever a

from nav_msgs.Odometry import * message of type

Odometry is received.
Scan message handler
def odom_handler(msg):
this code is executed whenever a scan is published
[...]
Main function
def main():
rospy.init_node(NODE_NAME)
rospy.Subscriber("/odom", Odometry, odom_handler) ——— Callback function

rospy.spin()

Topic name

Message type

Implementation example : Message-Topic

» Publishing to a topic » Main benefits of message/topic system
Initialize rospy
NODE_NAME = "localization' = capture messages in a file And replay them
import roslib; roslib.load_manifest(NODE_NAME) later independently

import rospy
= (Clear communication structure between side

Import standard String message type tools and libraries. As pointed out for
from std_msgs.msg import * example in RVIZ
Topic hame
Main function
def main(): r

pub = rospy.Publisher(“/scout/viewer”, String)
rospy.init_node(NODE_NAME)
msg = “Hello world” Message type

pub.publish(String(msg))

I Constructor call of

message
» Publish function

19

Implementation example : Service-client

» Service

Initialize rospy

NODE_NAME = 'localization'

import roslib; roslib.load_manifest(NODE_NAME)
import rospy

» client

Initialize rospy

NODE_NAME = ‘viewer '

import roslib; roslib.load_manifest(NODE_NAME)
import rospy

Import standard String message type

from std_msgs.msg import * # Import standard String message type

from std_msgs.msg import *
Service handler _ _ _ _ _
def handler(req): _ Service functionality ~ # Main function

this code is executed whenever the service is called Si2 e _ ; e .
return LocalizationSrvResponse() srv = rospy.ServiceProxy("/scout/localization",LocalizationSrv)

rospy.init_node(NODE_NAME)
Service name response = srv(1, x, y, theta)

Main function

def main(): /
rospy.init_node(NODE_NAME)
rospy.Service("/scout/localization”, LocalizationSrv, handler)
rospy.spin() \

Service type
20

How nodes find each other : ROS Master

» One node is a ROS Master by running _
. Publish on
roscore command on it. Image topic

» Keep track of publishers, subscribers and ?;urgﬁ;ier) | . Ilmage Viewer

topic

topics. :
; ------------ ’

» After nodes locate each other, they
communicate peer-to-peer.

Subscribe
to image topic

» Steps: ‘Camera Image
Publisher informs the ROS master about the topic and start (Publisher) Viewer

publishing.
Subscriber informs the ROS master about the interested Master
topics

ROS master inform Publisher that who is interested , and
publisher start sending messages to them.

[ROS.ORG - -]
21

Unity: Introduction

» Unity is game engine used to created high qualified visual
scenes.
» Unity is visualization tool not a simulation.
» Unity is widely used for virtual reality (VR) tasks because:
= Multi-platform : OSX, Windows, MAC, Android ,
= Powerful physics engine : gravity and collisions
= Very GUI lets you drag and drop elements
= Programming languages : C# and Javascript

[1 - Deviant art - Angry birds logo -
[2 - Geforde - Assassin's Creed Unity Graphics & Performance Guide -

[3- Unity Interface overview - Unity Official Tutorials -

» Unity interface

4. Project : =

22

Unity with ROS 3ROS e & unity

» Unity instead of RVIZ For visualization? ROS Unity
Not a good idea but possible. Ros bridge [y - |
server H‘ API
= ROS messages => events processed by 1 ¢
rendering loop in Unity. ¢ J;’;g:
= liveliness of visualization is lost because rosserial_python Rendering
rendering should be fast. serial_node.py lib
= Method : Connection between ROS-Unity by ROS
bridge.
= Rosbrige : connection to outside world by JSON
API through web sockets > JSON Data examples:
= roslagnch rosbridge_server {"op" "subscribe""
rosbridge_websocket.launch "topic": "/clock”,
Creates a web socket server working on port 9090 "type": "rosgraph_msgs/Clock™}.
{"op": "publish",
= (Qutside software call the server/port for "topic": "/unity/joy",

communication "msg": msg}.

23

Stand alone Unity

» Graphical robot controller : The reverse of previous
project

= Sending move commands from graphical robot to
physical robot

= |nput from environment by camera, Kinect, etc to
control graphical robot.

» Physical Robot => Arduino robotic frame
ware

[1]

» Calculation of position, etc => Unity

» Unity to Arduino Connection => USB

> Benefit : Control robot in Real time with T
human interaction Component

Transform

[1 - The Robot Engine - Making The Unity 3D Game Engine Work For HRI
Christoph Bartneck, Marius Soucy, Kevin Fleuret, Eduardo B. Sandoval]

24

Conclusions

ROS Qurity

» Powerful visualization tool

» Some equivalents: Unreal, DirectX, ...

» Suitable for game, design and graphic
industry

» To some extend Human Robot Interaction

» Complete OS for Robotics

» No equivalent

» Suitable for industrial large
scale robotic projects

» Research subject : Combining
Unity3D and ROS for nice
environment simulation.

25

References:

= ROS wiki -

= Powering the world’s Robots- ROS.ORG-

= The Robot Engine - Making The Unity 3D Game Engine Work For HRI - Christoph Bartneck,
Marius Soucy, Kevin Fleuret, Eduardo B. Sandoval

= From ROS to Unity: leveraging robot and virtual environment middleware for immersive
teleoperation - R. Codd-Downey, P. Mojiri Forooshani, A. Speers, H. Wang and M. Jenkin

= GAZEBO - Robot simulation made easy -

= Movelt! Motion Planning Framework -

= Unity3D -

= Mathwork -

26

